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Abstract. On the basis of the market microstructure theory and the continuous time stochastic volatility-
style microstructure model, a discrete time stochastic volatility microstructure model with state-
observability is proposed for describing the dynamics of financial markets. From the discrete time
microstructure model proposed, estimates of two immeasurable state variables representing the market
excess demand and liquidity respectively may be obtained. A simple trading strategy for dynamic asset
allocation, based on the indirectly obtained excess demand information instead of the prediction for price,
is presented. An approach to the estimation of the discrete time microstructure model using the extended
Kalman filter and the maximum likelihood method is also presented. Case studies on financial market
modeling and the estimated model-based asset dynamic allocation control for the JPY/USD (Japanese
Yen/US Dollar) exchange rate and Japan TOPIX (TOkyo stock Price IndeX) show satisfactory modeling
precision and control performance.

PACS. 89.65.Gh Economics, business, and financial markets

1 Introduction

It is well-known that financial markets generally display
randomness, nonlinearity, jumps, and properties such as
stochastic volatility. For this reason, Markov diffusion
processes (mainly Wiener processes and/or Poisson pro-
cesses) may be used as stochastic engines to construct
mathematical models for characterizing financial markets.
Many mathematical models have already been proposed
to describe the dynamics of financial markets, includ-
ing the nonlinear diffusion model, jump diffusion model,
stochastic volatility model, and the general evolutionary
model combining the features of all the above models (see
e.g. [1]).

In discrete time modeling, the ARCH (autoregressive
conditional heteroskedasticity) based stochastic volatility-
style models developed by Engle [2], Bollerslev [3] and
Nelson [4] were rapidly adopted in econometrics, finan-
cial economics and microeconomics, largely because the
conditional likelihood function for ARCH-style models is
easily calculated. However, most of the models proposed
focus on modeling the dynamics of asset price itself and
especially its conditional variance. In fact, it is also neces-
sary to deal with the dynamics of a financial market from
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different points of view, as has been proposed by some
researchers who have developed phenomenological models
based on identifying different processes influencing the de-
mand and supply of the market. One of the most interest-
ing of these models is the microstructure model proposed
by Bouchaud and Cont [5] on the basis of the market mi-
crostructure theory (see e.g. [6]). The model is defined by

dPt = λφt dt (1)

where Pt is the asset price, λ is the (inverse of) market
liquidity, and φt is the excess demand which is defined
by φt = φ+

t − φ−
t , where φ+

t is the instantaneous demand
and φ−

t is the instantaneous supply at any given instant
of time for the asset. φt characterizes whether the market
is over-valued (φt > 0, which tends to push the price up)
or under-valued (φt < 0, which tends to push the price
down). Model (1) assumes that price Pt is driven by the
excess demand φt, and the amplitude of price changes is
dependent on the liquidity of the market, i.e. 1/λ. There-
fore, if the liquidity is higher, then the market may absorb
excess demand by means of small price changes, whereas
when the liquidity is lower, a smaller excess demand may
lead to larger price changes. However, model (1) only pro-
vides an abstract description for the dynamics of market,
because the two market state variables (λ and φt) cannot
easily be measured directly. If these variables could be esti-
mated in real time from a time series of price, it would help
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traders make selling or buying decisions in market trading,
and its impact on financial practice could be enormous.

Iino and Ozaki [7] proposed a set of continuous time
stochastic differential equations following the approach of
model (1). Their model was called the continuous time
microstructure model and is given by




dPt = λtφt dt + λt dW1,t

dφt = (α1 + β1φt)dt + γ1 dW2,t

d log λt = (α2 + β2 log λt)dt + γ2 dW3,t

(2)

where W1,t, W2,t and W3,t are independent Wiener pro-
cesses, and α1, β1, γ1, α2, β2, and γ2 are constant pa-
rameters. Model (2) treats the hidden excess demand φt

and market liquidity λt as immeasurable state variables,
which may be estimated by filtering techniques, and ex-
presses the variation of conditional variance of the price,
the most prominent characteristic of financial markets, by
the change of market liquidity. Considering the market
mechanism, such a relation between the liquidity and the
conditional variance is natural. Therefore, model (2) offers
more useful information about the internal characteristics
of a price-varying process than can be gained just by look-
ing at the price data itself or its prediction.

Ozaki et al. [8] presented an asset allocation control
method for foreign exchange based on the estimated ex-
cess demand φ̂t|t offered by model (2). The continuous
time stochastic differential equations model (2) was es-
timated using the local linearization technique [7,9–11].
However, the computational load of estimating the con-
tinuous time model (2) is usually quite large, and small
changes to the model may lead to complicated compu-
tations, thus making the method inconvenient for some
applications.

In this paper, we propose a discrete time microstruc-
ture (DTMS) model describing the stochastic volatil-
ity dynamics of financial markets. A DTMS state space
model is developed from the continuous time microstruc-
ture model (2). The conditional mean, conditional vari-
ance and state observability condition are considered si-
multaneously in deriving the estimates of the DTMS
model parameters. The DTMS model is estimated by us-
ing the extended Kalman filter and the maximum likeli-
hood method. Model estimation results are obtained from
the proposed DTMS similar to those obtained from the
continuous time microstructure model (2), but the com-
putational burden is considerably reduced. Furthermore,
the DTMS model and its estimation method are much
more flexible, allowing the model to be easily modified
for different applications. An improved indirect feedback
control approach, using the DTMS model for asset dy-
namic allocation on the basis of estimated excess demand
φ̂t|t is also presented. Section 5 shows two examples of
modeling real data and dynamic asset allocation for the
JPY/USD currency exchange rate and the Japan TOPIX
index. It may be seen how real-time estimated excess de-
mand may be useful for traders considering dynamic asset
allocation processes. In both cases, satisfactory trading

strategies can be implemented in terms of the obtained
profit.

2 Discrete time microstructure model

Using Euler’s discrete time approximation to model (2)
and directly modeling the conditional variance λ2

t of the
price Pt, the DTMS (discrete time microstructure) model
is derived as follows


Pk = Pk−1 + λk−1φk−1 + γ3λk−1ξ1,k

φk = α1 + (1 + β1)φk−1 + γ1ξ2,k

log λ2
k = α2 + (1 + β2) log λ2

k−1 + γ2ξ3,k

(3)

where ξ1,k N(0, 1), ξ2,k N(0, 1) and ξ3,k N(0, 1) are inde-
pendent white noise processes. Note that the constant γ3

in the discretized model (3) is a new addition that helps
to describe the relation between Pk, λk−1 and φk−1 more
appropriately. Thus model (3) may be also regarded as
a redesigned discrete time microstructure model. To es-
timate model (3) by the Kalman filtering technique and
the maximum likelihood method, we need to build a state
space equation model with state-observability. First, from
model (3), the state equation of the DTMS model may be
given as follows

Xk = A(Xk−1|θ)Xk−1 + Ωk, Ωk ∼ N(0,Qk) (4)

where

Xk =
[
Pk φk log λ2

k

]T

A(Xk−1|θ) =




1 λk−1 0
α1

Pk−1
1 + β1 0

α2

Pk−1
0 1 + β2




Qk =




γ2
3λ2

k−1 0 0

0 γ2
1 0

0 0 γ2
2




and θ in (4) includes all the constant parameters to be
estimated in model (3). In state equation (4), only price
Pk is measurable. It is easy to check that the state space
equation, composed of state equation (4), and the out-
put equation including only Pk as observation variable
(so that only the conditional mean is considered) is state-
unobservable. We must therefore extract more information
on the observations by considering the conditional mean
and the conditional variance simultaneously so that the
state-observability condition is satisfied.

Squaring both sides of the first equation in model (2),
and ignoring the higher order terms of dt in accordance
with the rules of Ito calculus [12], and noting that (dW1,t)2
behaves like dt in continuous time gives

(dPt)2 = λ2
t dt. (5)
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Discretizing the above formula (5) and taking logarithms,
we obtain

log(Pk+1 − Pk)2 ≈ log λ2
k. (6)

If Pk and log(Pk −Pk−1)2 are regarded as two observation
variables and relation (6) is applied, a state space repre-
sentation of DTMS model (3) satisfying state observability
condition could be built as follows{

Xk+1 = A(Xk|θ)Xk + Ωk+1, Ωk+1 ∼ N(0,Qk+1)

Yk = C(Xk|θ)Xk + Γ k, Γ k ∼ N(0,Rk)
(7)

where
Xk =

[
Pk φk log λ2

k

]T
Yk =

[
Pk log(Pk − Pk−1)2

]T

A(Xk|θ) =




1 λk 0
α1

Pk
1 + β1 0

α2

Pk
0 1 + β2




C(Xk|θ) =


 1 0 0

δ

Pk
0 1




Qk+1 =




γ2
3λ2

k 0 0

0 γ2
1 0

0 0 γ2
2




Rk =

[
ε2
1 0

0 ε2
2

]

where ε1, ε2 are constants, and δ is a constant which ad-
justs the bias from the variable transformation in (6). We
can see that there are very clear and direct relationships
between the coefficient matrix elements of the state space
equation (7) and the parameters of DTMS model (3). This
contrasts with the continuous time model (2), where af-
ter local linearization, the matrix elements of the derived
discrete time state space equation have a very compli-
cated structure, which cannot even be represented by an
explicit analytic formulas. The discrete time microstruc-
ture model (7) is thus computationally more efficient and
easier to generalize to more complicated models.

3 Estimation method

The purpose here is first to determine all the constant pa-
rameters in DTMS model (7), and then to estimate the
state Xk|k−1 = E(Xk|Yk−1, ...,Y1) from the observations
(outputs) using model (7). This is a type of nonlinear fil-
tering problem, for which we use the maximum likelihood
method and the extended Kalman filter to estimate the
parameters θ and the state Xk|k−1.

3.1 The likelihood function for the extended nonlinear
Kalman filter

From the output equation of model (7), the estimated in-
novation of {Yk; k = 1, 2, ..., N} (where N is the number
of data points) based on Xk|k−1 is given by

Γ k = Yk − C(Xk−1|θ)Xk|k−1. (8)

Assuming Γ k is a 2-dimensional Gaussian white noise vec-
tor with covariance matrix Ψk, then the joint conditional
density of Γ k may be written as

p(Γ k|Yk−1, ...,Y1, θ) =
1

2π|Ψk|1/2
exp
(
−1

2
Γ T

k Ψ−1
k Γ k

)

where |·| denotes the determinant [13]. Therefore (−2)log-
likelihood of model (7) may be derived as follows

(−2) log p(YN , ...,Y1|θ)

=
N∑

k=1

(−2) log p(Yk|Yk−1, ...,Y1, θ)

=
N∑

k=1

(−2) log p(Γ k|Yk−1, ...,Y1, θ)

=
N∑

k=1

{
log |Ψk| + Γ T

k Ψ−1
k Γ k

}
+ 2N log 2π.

(9)

3.2 Extended nonlinear Kalman filtering

If A(X̂k|k|θ) and C(X̂k|k|θ) are used to approximate
A(Xk|θ) and C(Xk|θ) at each step respectively, then
based on the conventional Kalman filtering approach (see
e.g. [13] and [14]), the estimate X̂k|k−1 may be calculated
using the following extended recursive Kalman filtering
scheme.

Prediction

Let X̂k|k−1, Sk denote the conditional mean and condi-
tional covariance of Xk given Yk−1 = {Y1, ...,Yk−1},
then the prediction and the innovation may be derived
as follows


X̂k|k−1 = E
{
Xk|Yk−1

}
= A

(
X̂k−1|k−1

∣∣θ) X̂k−1|k−1

Γ̂ k = Yk − C
(
X̂k−1|k−1

∣∣θ) X̂k|k−1

Sk = E

{(
Xk − X̂k|k−1

)(
Xk − X̂k|k−1

)T
}

= A
(
X̂k−1|k−1

∣∣θ)Vk−1A
(
X̂k−1|k−1

∣∣θ)T

+ Qk.

(10)
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Filtering

Let X̂k|k, Vk denote the conditional mean and conditional
covariance of Xk given Yk = {Y1, ...,Yk}, then the fil-
tered state is given as


X̂k|k = E
{
Xk|Yk

}
= X̂k|k−1 + KkΓ̂ k

Vk = E

{(
Xk − X̂k|k

)(
Xk − X̂k|k

)T
}

=
[
I − KkC

(
X̂k−1|k−1

∣∣θ)]Sk

Ψ̂ = E
{
Γ̂ kΓ̂ T

k

}
= C

(
X̂k−1|k−1

∣∣θ)SkC
(
X̂k−1|k−1

∣∣θ)T

+ Rk

Kk = SkC
(
X̂k−1|k−1

∣∣θ)T

Ψ̂−1
k .

(11)

3.3 Parameter estimation by the maximum likelihood
method

From the estimated innovation Γ̂ k and its covariance Ψ̂k

with respect to the given parameters θ, the parameters θ∗
may be obtained by minimizing the (−2) log-likelihood
function (9) as follows

θ∗ = arg min
θ

N∑
k=1

{
log
∣∣∣Ψ̂k(θ)

∣∣∣+ Γ̂ k(θ)T Ψ̂k(θ)−1Γ̂ k(θ)
}

+ 2N log 2π

In this paper, the initial conditions X0|0 and V0 in
the recursive Kalman filtering formulas (10–11), and the
system observation noise variance Rk in DTMS model (7)
are also regarded as the parameters to be estimated, which
are all included in the parameter vector θ. The function
‘FMINSEARCH’ based on the Nelder-Mead method in the
MATLAB Optimization Toolbox is used to carry out the
parameter optimization in this paper.

4 Asset dynamic allocation control

If the DTMS model (7) is used to describe the dynamics
of a currency exchange rate or a stock index in financial
markets where Pk in model (7) denotes the exchange rate
between two currencies or the price of a stock index, based
on the estimated excess demand φ̂k|k rather than on the
prediction of price, i.e. P̂k+1|k, dynamic asset allocation
control may be carried out much more efficiently. Since
the predictive error of P̂k+1|k is usually close to a white
noise due to the randomness of financial markets, it may
be difficult to perform dynamic allocation satisfactorily
based on predicted price. However, the information about
future market trend offered by the directly-immeasurable
excess demand φk possesses much better stability than the

market trend information obtained from the prediction of
price.

Without loss of generality, the JPY/USD (Japanese
Yen/US Dollar) currency asset allocation control will
be considered here, where Pk in model (7) denotes the
JPY/USD exchange rate. The excess demand φk repre-
sents the market state, that is, if φk > 0, it means the
market is presently over-valued (or demand is now larger
than supply, and ‘+’ excess demand has pushed the price
up), and one should sell yen and buy dollars; whereas,
if φk < 0, the market is presently under-valued (or de-
mand is now smaller than supply, and ‘–’ excess demand
has pushed the price down), so one should buy yen and
sell dollars in order to maintain or increase one’s assets.
From model (7), we may estimate the excess demand of
the JPY/USD exchange market φk by φ̂k|k and use this
price trend information to propose a dynamic asset allo-
cation trading strategy for JPY/USD currency assets as
follows

Assets allocation strategy for JPY/USD




if φ̂k|k > τ1, keep the Dollar 100%;

if τ2 < φ̂k|k ≤ τ1, keep the Dollar 80%, Yen 20%;

if −τ3 < φ̂k|k ≤ τ2, keep the Dollar 50%, Yen 50%;

if −τ4 < φ̂k|k ≤ −τ3, keep the Dollar 20%, Yen 80%;

if φ̂k|k ≤ −τ4, keep the Yen 100%.
(12)

where τ = [τ1 τ2 τ3 τ4]T are the “optimum” switching
threshold parameters.

Optimization of the threshold parameters

Define an asset-valuation function by

J(τ) = −AN(τ ) +
µ

N

N∑
k=1

∣∣∣∣Ak(τ )

−
[
A0 +

k

N
(AN (τ ) − A0)

] ∣∣∣∣
2

(13)

where µ is a weighting factor, Ak represents assets at
time k, and A0 is the given initial assets. The first part
of function (13) is the requirement for final assets, and
the second part of function (13) represents the fluctuation
amplitude of assets during the allocation control process.
The optimal threshold parameters may be obtained by
minimizing the valuation-function (13) as follows

τ ∗ = arg min
τ

J(τ ) (14)

which may be solved using the parameter optimization
method mentioned earlier in Section 3.
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Fig. 1. The observation data (JPY/USD exchange-rate).

5 Numerical study and financial implications

5.1 JPY/USD exchange rate time series modeling
and JPY/USD currency asset allocation

The daily time series of the JPY/USD exchange rate from
17/01/1990 till 26/12/1997 is used to estimate the DTMS
model (7) and to show the JPY/USD currency asset al-
location control process. The observation data Pk is com-
puted as follows

Pk = 100 × log Zk (15)

where Zk denotes the (closing) spot price. Figure 1 shows
the observations, in which the first 1 000 data points
(training data) are used to estimate model (7) and to
optimize the threshold parameters τ for the asset alloca-
tion strategy (12), and the last 1 000 data points (testing
data) are used to test the model and control performance.
To avoid the problem of zero logarithms in the output
variables Yk = [Pk log(Pk − Pk−1)2]T in model (7), ap-
proximation below suggested by Fuller [15] is used to cope
with the observations

log(Pk − Pk−1)2 ≈ log
[
(Pk − Pk−1)2 + ησ2

P

]
− ησ2

P

(Pk − Pk−1)2 + ησ2
P

(16)

where σ2
P is the sampling variance of Pk − Pk−1, and η is

a constant, which in this case study is set to 0.2.
The estimated results for model (7) using the method

presented in Section 3 for the JPY/USD exchange rate
training data and testing data are given in Figures 2–5 re-
spectively. Figures 2 and 4 show that the estimated resid-
uals of observations Pk both for training data and for test-
ing data are very close to white noise, which shows that the
estimates are valid. From Figures 3 and 5 we can see that
the estimated excess demand φ̂k|k varies around zero, and
is much smoother compared with the (strongly random)

           
 
 
 

         
 
 
 
 

          

 
 
 

Fig. 2. Pk, estimated innovations and histogram of innova-
tions for the training data (JPY/USD).

Fig. 3. The estimated excess demand φ̂k|k and liquidity λ̂k|k
for the training data (JPY/USD).

Fig. 4. Pk, estimated innovations and histogram of innova-
tions for the testing data (JPY/USD).
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Fig. 5. The estimated excess demand φ̂k|k and the liquidity

λ̂k|k for the testing data (JPY/USD).

estimated residuals of Pk shown in Figures 2 and 4. The
estimated parameters and initial conditions of model (7)
for the JPY/USD exchange rate are given as follows

α1 = 0.0008267, 1 + β1 = 0.9417, γ1 = 0.05442,

α2 = 0.005910, 1 + β2 = 0.9917, γ2 = 0.09417,

γ3 = 1.001, δ = −2.253,

ε1 = 0.0003169, ε2 = 2.513,

X0|0 =


 498.01

−0.000166
−1.4312


 ,

V0 =


0.879 0 0

0 1.035 0
0 0 0.875


× 10−9.

Figures 6 and 7 show the JPY/USD currency asset al-
location control results using strategy (12) for the train-
ing data and testing data respectively. In valuation func-
tion (13), the total assets to be controlled is computed
in yen, which include the yen-assets and the dollar-asset
equivalent to yen at any time, and the initial total assets
are all set to be 100 dollars in each case. The switching
actions plotted in Figures 6 and 7 show how the assets are
switched, where ‘1’ means keeping 100% dollars, ‘0’ means
keeping 100% yen, ‘0.82’ means keeping 80% dollars and
20% yen, ‘0.28’ means keeping 20% dollars and 80% yen,
finally ‘0.5’ means keeping 50% dollars and 50% yen. In
Figures 6 and 7, the two B curves show the variation of
the equivalent yen-assets corresponding to the fixed ($100)
dollar-assets varying with exchange rate in the case where
there is no allocation control. We can see that by carrying
out allocation control strategy (12), the total assets (A)
effectively avoid the downward plunge of the dollar and

Fig. 6. Allocation control of currency assets computed in JPY
for the training data (JPY/USD); the initial total assets are all
$100 (14,549 yen); the assets (A) with control have final assets
$132.01 (14,930 yen); the assets (B) without control have final
assets $100 (11,310 yen).

 

Fig. 7. Allocation control of currency assets computed in JPY
for the testing data (JPY/USD); the initial total assets are all
$100 (11,275 yen); the assets (A) with control have final value
$111.052 (14,442 yen); the assets (B) without control have final
value $100 (13,005 yen).

prevent asset loss as shown in Figures 6 and 7. The op-
timum switching threshold parameters obtained by min-
imizing valuation function (13) using the training data
(JPY/USD exchange rate), and other related parameters
are given by

τ1 = 0.03212, τ2 = 0.004378, τ3 = 0.0007057,

τ4 = 0.01356, N = 1000, µ = 1, A0 = $100.
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Fig. 8. The observation data (Japan TOPIX).

5.2 TOPIX (TOkyo stock Price IndeX) time series
modeling and the stock/currency assets allocation

In this case study, we first identify a DTMS model (7)
for the Japan TOPIX index time series and then carry
out the stock/currency dynamic asset allocation accord-
ing to the estimated excess demand of TOPIX which we
consider as a special stock whose value per share is as-
sumed to be just the TOPIX index value. Formula (15)
is used here also for data conversion. The spot data Zk

in (15) is the daily closing price of the TOPIX index value
time series from 1/10/1993 to 29/10/2000. The converted
observation data Pk is shown in Figure 8, in which the
first 1 000 data points are used as training data to esti-
mate model (7) and to optimize the threshold parameters
in trading strategy (12), and the last 891 data points are
used as test data to check the modeling and allocation
performance.

The modeling results using the DTMS model (7) for
the training data and test data are given in Figures 9–12
respectively. Figures 9 and 11 show the modeling valid-
ity in terms of the estimated residuals of observation Pk.
From Figures 9–12, it is clear that the estimated excess
demand displays much more ‘smoothness’ than the es-
timated innovations as was also seen in Section 5.1 for
the JPY/USD exchange rate time series modeling. This
implies that the estimated excess demand information is
more reliable and useful for making trading decisions than
the estimated innovation. On the other hand, comparing
Figure 3 (or Fig. 5) and Figure 10 (or Fig. 12), we can see
that the fluctuations of market liquidity for the TOPIX
are much faster than those of the JPY/USD exchange
market. This means that the TOPIX stock market’s index
variation is larger than the JPY/USD exchange market’s
rate variation, which coincides with the actual situation.
For example, the variance of daily return from 1/10/1993
to 29/10/2000 is 1.1778 for TOPIX index and 0.7809 for
JPY/USD exchange rate.

Fig. 9. Pk, estimated innovations and histogram of innova-
tions for the training data (TOPIX).

Fig. 10. The estimated excess demand φ̂k|k and the liquidity

λ̂k|k for the training data (TOPIX).

Fig. 11. Pk, estimated innovations and histogram of innova-
tions for the testing data (TOPIX).
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Fig. 12. The estimated excess demand φ̂k|k and the liquidity

λ̂k|k for the testing data (TOPIX).

Looking at these two examples, we can see that the
discrete time microstructure (DTMS) model (7) proposed
in this paper may be applied to describe different kind of
financial markets. The estimated parameters and initial
conditions of model (7) for the TOPIX are shown below

α1 = −0.0001837, 1 + β1 = 0.9358, γ1 = 0.01672,

α2 = −0.004015, 1 + β2 = 0.9828, γ2 = 0.3301,

γ3 = 0.4381, δ = 3.117× 10−4,

ε1 = 4.025 × 10−4, ε2 = 0.1385,

X0|0 =


740.85

0.0020
0.5275


 ,

V0 =


0.5840 0 0

0 0.4286 0
0 0 3.676


× 10−5.

We now consider the dynamic allocation problem where
we have to choose to keep how many assets in TOPIX-
based stock or put how many assets in currency accord-
ing to the estimated excess demand of the TOPIX index.
Assume here that the TOPIX-based stock has net asset
value per share in JPY identical with the TOPIX index
value, and the net asset value of TOPIX-based stock in
JPY is the TOPIX index value multiplied by the number
of shares. Figures 13 and 14 show the dynamic allocation
control results where the allocation strategy (17) below
used to allocate the dynamic assets composed of stock
and currency is similar to strategy (12), and the meaning
of the switching action given in Figures 13–14 is also simi-
lar to that used in Section 5.1 for the JPY/USD currency
assets allocation.

Fig. 13. Allocation control of stock/currency assets computed
in JPY for the training data (TOPIX); the initial total assets
are all 100 shares (163,409 yen); assets (A) with control have
final value 123.424 shares (190,571 yen); assets (B) without
control have final value 100 shares (154,404 yen).

Fig. 14. Allocation control of stock/currency assets computed
in JPY for the testing data (TOPIX); the initial total assets
are all 100 shares (151,279 yen); assets (A) with control have
final value 126.174 shares (161,966 yen); assets (B) without
control have final value 100 shares (128,367 yen).

Assets allocation strategy for TOPIX




if φ̂k|k > τ1, keep the stock 100%;

if τ2 < φ̂k|k ≤ τ1, keep the stock 80%, currency 20%;

if −τ3 < φ̂k|k ≤ τ2, keep the stock 50%, currency 50%;

if −τ4 <φ̂k|k ≤−τ3, keep the stock 20%, currency 80%;

if φ̂k|k ≤ −τ4, keep the currency 100%.
(17)

From Figures 13–14 we can see results similar to the
JPY/USD currency asset allocation control example
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shown in Section 5.1. Figures 13–14 show that the as-
sets (A) controlled by the asset allocation procedure
achieve an obvious increase compared with the assets (B)
that are not controlled. The optimum switching thresh-
old parameters in allocation strategy (17) obtained by
minimizing valuating function (13) using the training
data (TOPIX) and other related parameters are given as
follows

τ1 = 0.005929, τ2 = 0.0001188, τ3 = 0.0001477,

τ4 = 0.005848, N = 1000, µ = 1, A0 = 100.

6 Conclusions

The proposed discrete time microstructure model may
effectively describe a class of stochastic volatility finan-
cial markets. The estimation method presented for the
model on the basis of the Kalman filter and the like-
lihood maximum method may be easily used to esti-
mate the model. The model used two important directly-
immeasurable variables that represent the excess demand
and the liquidity of financial market. Based on the esti-
mated excess demand from the model, the proposed as-
set allocation control strategy provided an effective ap-
proach to increasing assets or preventing the loss of assets
in rapidly varying financial markets. Further extensions to
this work would be to improve the structure of the discrete
time microstructure model, and to add a jump diffusion
process for giving the model better adaptability to more
general problems.
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